NOTES ON SPLINE FUNCTIONS III:
ON THE CONVERGENCE OF THE INTERPOLATING
CARDINAL SPLINES AS THEIR DEGREE
TENDS TO INFINITY'

BY
I. J. SCHOENBERG

ABSTRACT

It is shown that for entire functions f(x) defined by a Fourier-Stieltjes integral
(9) the cardinal spline S, (x) of the odd degree 2m-1, which interpolates f(x) at
all integers, converges to f(x) as m tends to infinity. Properties of the exponen-
tial Euler spline are used in the proof.

1. Introduction

Let n = 2m — 1 be an odd integer and let &, = {S(x)} denote the class of
spline functions S(x) of degree n = 2m — 1, with knots at the integers and of the
continuity class C*"~%(R). Within this class we wish to interpolate a prescribed bi-
infinite sequence (y,) of numbers for — oo <v< 0, that is, S(v)=y, for all integers
v. We know (see, for example, [6, Lec. 4]) that if y, grows at most like a power of
|v] as |v]|— oo, then there is a unique S,(x)€ ¥, such that S,(x) grows at

most like a power of | x| as | x| = co which satisfies
S,.(v) =y, for all v.

We are interested in cases when S,(x) converges to a limit function as m
approaches infinity. Two such cases are presently known.

(i) The sequence (y,) is periodic with period k.

(i) (y,)€ !, hence Xy, | < co. For case (i) refer to [3], [1], [4], and for case
(ii) to [S] and [6, Lec. 97. Since, for the purposes of this paper, we are concerned
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exclusively with cardinal splines, we shall specialize the results of [1] and [4] to
the case of equidistant knots. Let us now state the relevant results in detail.

For Case (i), the sequence (y,) is periodic with period k, hence y, = y,., for
all v. The results depend on the parity of k.

For Case (i), k = 21 + 1 is odd. It is well known that the periodic sequence (y,)
can be uniquely interpolated at the integers by a trigonometric polynomial of the
form

! 2nivx
0)) T(x) =v }_ll A, exp (m)

with period k = 21 + 1. Specializing results from [1] and [4] to equidistant knots
we obtain Theorem 1.
THEOREM 1. As m approaches infinity
lim S,(x) = T(x)
uniformly for all real x.

For Case (i), k = 21 is even. In this case we know that (y,) can be interpolated
by a unique trigonometric polynomial

1 .

@ THx) = T A, exp (2’””")
v=-—] 21

such that

3 A_, = A,

This is the proximal interpolant of [4]. Specializing results from [1] and [4]
we obtain Theorem 2.

THEOREM 2. (Quade and Collatz [3]). As m approaches infinity
lim S, (x) = T*(x)

uniformly for all real x.

For Case (i), (y,)€l,, or ZI Vv IZ < 0. By the Riesz-Fischer theorem we can
write

Yy = 3177 ¢"™ g(u)du, where g(u) € Ly(— 7, 7).

Specializing results from [S, Th. 2], or [6, Lec. 9] we obtain Theorem 3.

THEOREM 3. If we define the entire function f(x) by
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@ 16) = 5= [ e
then
lim $,() = /02

m—w
uniformly for all real x.

Reporting about these results in [6, Lec. 9] I conclude with the remark: “‘...The
question arises as to the existence of a comprehensive theory that would cover
these separate cases...’’. A comprehensive general discussion, as given in this
paper, has proven much simpler than the proofs of either of the individual cases
described above. This is so because of the properties of the so-called exponential
Euler splines whose definition and essential properties are given as follows.
(The reader is referred to [6, Lec. 2, 3] for further details.)

Let

(5 t=1te" for —n<u<m >0,

be a fixed parameter, assuming for the moment that ¢ # 1. We denote by 4,(x; 1)
the so-called exponential Euler polynomials defined by the generating function

=1 _ 3 Adesd)

n
zZ.
t—eéf 0 n!

A,(x; ?) is a monic polynomial of degree n in x with the property that 4,(0;t) # 0
for all ¢ subject to (5). This allows us to make the following definition.

DErFINITION 4. We define the exponential Euler spline S,(x; t) by setting

A(x; 1)

Sa(x; 1) = Z(O—t)—

for0<x<l1.

We extend its definition to all real values of x by means of the functional equation
Sax+1;8) =1t S,(x; 1) for all real x.

Finally we complete its definition for ¢t = 1 by setting S,(x; 1) = 1 for all real
x. The essential properties of S,(x; t) are stated in Lemma 5.

LeMMA 5. S,(x; 1) has four essential properties.
(i) Whether n is even or odd, S,(x; t) is a piecewise polynomial function of the
continuity class C"~Y(R). Thus

Si(x; e L.
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(ii) S,(x; t) interpolates the exponential t* = 7°¢™* at all integers, hence
S, (v;t) = t* for all integers v.
(iii) The relation
©) lim S,(x;t) =¢*
n—+w
holds.

@iv) If n = 2m — 1 is odd, then A,(0; —1)#0. We may let t = — 1, a value
forbidden heretofore. In fact

Som—1(x; = 1) = &1 (x)

is the well-known Euler spline of odd degree. If we restrict t to the unit circle,

we may assume that
t=e", —nZu=sm.

Then (6) can be sharpened to the inequality

2m
) |e'"x—Sz,,,_1(x; e ¢, (l—:—l) for all real x.

Here C,, is a constant which is less than three for all m. Some best values of C,, are
Cl = l8‘7'!:2, C2 = 1, C3 = 1.
We conjecture that the best value is C,, = 1 for m > 3.

The inequality (7), with C,, replaced by the value 4, was first established by
Golomb [2] for values of u which are rational multiples of n. This was a necessary
restriction, since Golomb’s discussion was devoted only to periodic spline in-
terpolation. A proof of (7) for the present cardinal case is actually much simpler.

As a very special case of Theorem 2 we obtain that

8) lim S,,,_,(x; —1) = cosnx uniformly for real x.

m=r

This fact will be used in Section 2.

2. The main result

The presentation and derivation of our main reasult can now be brief-
ly stated after our elaborate introduction. Consider the Fourier-Stieltjes
transform

©) f(x) = f T o),
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where a(u) is of bounded variation in [— =, x]. Clearly f(x) is an entire function
of exponential type less than or equal to m. Moreover, if we normalize a(u) in
order to satisfy 2a(u) = a(u + 0) + a(u — 0) for — = < u < =, then a(u) is defined
uniquely by (9) up to an additive constant. If we define
(- +0) if u=—nm
og(u) = < olu) if —w<u<m,

aor—-0 if u=m,

then a,(u) is also continuous at the endpoints ¥ = + = Setting
(10) A=o(-n+0)—a—n), B=onr)—ar-0)
we may write
fx) = f e™day(u) + Ae "4 Be™

or
(11) f(x) = f e™day(u) + (4 + B)cosnx + i(B — A)sin nx.

THEOREM 6. If S,(x) denotes the unique bounded element of ¥,,_, that
interpolates f(x) at all integer values of x, then

lim S,(x) = f e™day(u) + (4 + B)cosnx
uniformly for all real x.

PROOF. We claim that the unique interpolating spline S,(x) which is bounded
is also given by

(12) S,(x) = f " Same (6 @) dutg() + (A + B) &y ().

Indeed, observe first that | S,,_(x; €)| £ 1 for all real x, by [6, Lec. 3, Rel.
(6.13)], then that the Riemann-Stieltjes sum

(13 2 Sym—1(x; exp (ivy) (oro(uy) — o(u;-1))

evidently is an element of %,,_, that converges uniformly on refinement with
respect to x in every finite interval of the x-axis. It follows that the S,(x), defined
by (12), is an element of &,,,_;. To show that it interpolates f(x), for x = v an
integer, note that (12) implies that
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S, (v) = f ) e™dao(u) + (4 + B)cosnv + i(B — A)sinnv = f(v)

by (11). This proves our claim in the opening statement of the proof of Theorem 6.
We now define

(14) Folx) =J‘u e™ doy(u) + (A + B)cos nx.
Subtracting (12) from (14) we obtain
1) = Su3) = [ (€= 3,55 €NMltes) + (A + B)cos 5 = Sy i),

from which

)= Su0] 5 [ (6= Sumesla €] [ dot)| +

+ |A+ B||cosnx — €y 1(%)].

Using sup-norms on R, (7) shows that
n IuI 2m
”fo(x) - S,(x) ”m <3 f_ (vn—) |da0(u)[ + |A + Bl . ” COSTX — & ppy—-1(8) ”w

The last term on the right side approaches zero as m approaches infinity by (8).
The integral approaches zero as well because of the continuity of ay(u) at the
endpoints + 7. This also implies the continuity of the total variation of a,(u) at
those points which completes the proof of Theorem 6.

3. Special cases

In this section we wish to show how Theorem 6 furnishes the previously shown
results as well as many new ones for special choices of the function a(u). We offer
three such cases.

@) (y,) is a periodic sequence. Let k = 2/ + 1 be odd. The trigonometric
polynomial (1) is evidently of the form (9) if a(u) is a suitable step-function. This
step-function is continuous at + = and Theorem 6 implies Theorem 1. If k = 2]
is even, then (2) also results from (9) for an appropriate step-function a(u). The
relation (3) shows that its two jumps (10) are equal, hence f(x) = fo(x) and
Theorem 6 implies Theorem 2.

(i) (y,)€l,. The function f(x) as defined by (4), is also of the form required
by Theorem 6. Since g(u) € L,(— =, n) implies g(u) € L,(— =, =), it suffices to set



Vol. 16, 1973 SPLINE FUNCTIONS III 93

a(u) = —z—ln——J. g()dv, for —nSus<m.

Here «(u) is even absolutely continuous.
(iii) F(x) is almost periodic in the sense of H. Bohr. If a(u), as defined in (9),
is purely discontinuous, we obtain from (9) that with pairwise different A,

f(x) = X A,exp(il,x), Z |Av|<oo, for —n<A, S
v=1 1

Of course the number of discontinuities may also be finite, but in any case f(x) is
almost periodic and has an absolutely-convergent Fourier series. In order to have
the interpolating spline S,,(x) converge to f(x) we must assume that if A, = —mx,
then (say) 4, = @, and A; = A,, hence

f(x) =2A4,cosnx + X A,exp(il,x).
3
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