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ABSTRACT 

It is shown that for entire functionsf(x) defined by a Fourier-Stieltjes integral 
(9) the cardinal spline S m (x)  of the odd degree 2m-l,  which interpolates f(x) at 
all integers, converges to f(x) as m tends to infinity. Properties of the exponen- 
tial Euler spline are used in the proof. 

1. Introduction 

Let n = 2m - 1 be an odd integer and let 5a, = {S(x)} denote the class of 

spline functions S(x )  of degree n = 2m - 1, with knots at the integers and of the 

continuity class C2m-2(~). Within this class we wish to interpolate a prescribed bi- 

infinite sequence (Yv) of numbers for - ~ < v < ~ ,  that is, S(v) = Yv for all integers 

v. We know (see, for example, [6, Lec. 4]) that if y, grows at most like a power of 

[v[ as I v ] ~  oo, then there is a unique S,,(x)e S#2,,_ 1 such that S,,,(x) grows at 

most like a power of Ix [ as [x I~ ~o which satisfies 

S,,(v) = y ,  for all v. 

We are interested in cases when S,,(x)  converges to a limit function as m 

approaches infinity. Two such cases are presently known. 

(i) The sequence (y~) is periodic with period k. 

(ii) (y,) e 12, hence Y~IY~ 12 < oo. For case (i) refer to [3], [1], [4], and for case 

(ii) to [5] and [6, Lec. 9]. Since, for the purposes of this paper, we are concerned 
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exclusively with cardinal splines, we shall specialize the results of [1] and [4] to 

the case of equidistant knots. Let us now state the relevant results in detail. 

For Case (i), the sequence (Yv) is periodic with period k, hence y, = Y,+k for 

all v. The results depend on the parity of  k. 

For Case (i), k -- 21 + 1 is odd. It is well known that the periodic sequence (Y0 

can be uniquely interpolated at the integers by a trigonometric polynomial of the 

form 

t [2nivx~ 
(1) T(x) - ~ 3 ,  A~exp 

with period k = 21 + 1. Specializing results from [1] and [4.] to equidistant knots 

we obtain Theorem 1. 

THEOREM 1. As m approaches infinity 

limS,,(x) -- T(x) 

uniformly for all real x. 
For Case (i), k = 21 is even. In this case we know that (y,) can be interpolated 

by a unique trigonometric polynomial 

' (2nivx~ 
(2) T*(x) = ,=-~" A, exp ~-2T--'} 

such that 

(3) A-l  = As. 

This is the proximal interpolant of  [4]. Specializing results from ['1] and [4.] 

we obtain Theorem 2. 

TnEOgEM 2. (Quade and Collatz [3]). As m approaches infinity 

limSm(x) = T*(x) 

uniformly for all real x. 
For Case (ii), (Y0 e lz, or E l y  , [z < oo. By the Riesz-Fischer theorem we can 

write 

1 f ~  e '~"g(u)du, where g(u)~L2(-  zc, n). Y" = 27( 

Specializing results from 1-5, Th. 2.], or [6, Lec. 9] we obtain Theorem 3. 

THEOREM 3. I f  we define the entire function f(x)  by 
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(4) 

then 

uniformly for all real x. 

SPLINE FUNCTIONS III 

1re ixUo(u)du f ( x )  = ~ _ 

89 

lim Sm(x ) = f ( x )  
m - i ,  oo 

Reporting about these results in [6, Lec. 9] I conclude with the remark: "...The 

question arises as to the existence of a comprehensive theory that would cover 

these separate cases...". A comprehensive general discussion, as given in this 

paper, has proven much simpler than the proofs of either of the individual cases 

described above. This is so because of the properties of  the so-called exponential 

Euler splines whose definition and essential properties are given as follows. 

(The reader is referred to [6, Lee. 2, 3] for further details.) 

Let 

(5) t = ze *~, for - r c < u < T r ,  z > 0 ,  

be a fixed parameter, assuming for the moment that t # 1. We denote by A,(x; t) 

the so-called exponential Euler polynomials defined by the generating function 

t -  1 xz ~ A.(x; t) 
z". t - -  ~ e  = Lo n! 

A.(x; t) is a monic polynomial of  degree n in x with the property that An(0; t) # 0 

for all t subject to (5). This allows us to make the following definition. 

DEFINmON 4. We define the exponential Euler spline S.(x; t) by setting 

S.(x; t) A.(x; t) - A . ( 0 ; t )  for 0 < x < l .  

We extend its definition to all real values of x by means of the functional equation 

S.(x + 1; t) = t S.(x; t) for all real x. 

Finally we complete its definition for t = 1 by setting S.(x; 1) = 1 for all real 

x. The essential properties of S.(x; t) are stated in Lemma 5. 

LEMMA 5. Sn(x ; t) has four essential properties. 

(i) Whether n is even or odd, S,(x; t) is a piecewise polynomial function of the 

continuity class C"-1(~). Thus 

S.(x; t) ~ 50. 
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(ii) S,(x; 0 interpolates the exponential t x = zXe ~ at all integers, hence 

S,(v; t) = t" for all integers v. 

(iii) The relation 

(6) lira S.(x; 0 = t~ 
n -.-~ oo 

holds. 

(iv) I f  n = 2m - 1 is odd, then A,(0; - 1) # 0. We may let t = - 1, a value 
forbidden heretofore. In fact 

S2=- l(x; - 1) = ~'2,,- l(x) 

is the well-known Euler spline of odd degree. I f  we restrict t to the unit circle, 
we may assume that 

t = e ~", - n < u < n .  

Then (6) can be sharpened to the inequality 

e - S2m-l(x; etU)l < Cm for all real x. 

Here Cm is a constant which is less than three for all m. Some best values of Cm are 

1 2 C~ = ~ n ,  C2= 1, C3 = 1. 

We conjecture that the best value is C,, = 1 for m > 3. 

The inequality (7), with Cm replaced by the value 4, was first established by 

Golomb [2]for values of u which are rational multiples of n. This was a necessary 

restriction, since Golomb's discussion was devoted only to periodic spline in- 

terpolation. A proof of (7) for the present cardinal case is actually much simpler. 

As a very special case of Theorem 2 we obtain that 

(8) lim S2m_ l(X] -- 1) = cos nx uniformly for real x. 
n l  -I" O0 

This fact will be used in Section 2. 

2. The main result 

The presentation and derivation of our main reasult can now be brief- 

ly stated after our elaborate introduction. Consider the Fourier-Stieltjes 

transform 

(9) f ( x )  = f ~,  e~XUdo~(u), 
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where ~(u) is o f  bounded variation in [ -  n, hi. Clearly f (x)  is an entire function 

of exponential type less than or equal to n. Moreover, if we normalize ct(u) in 

order to satisfy 2~(u) = a(u + 0) + ~(u - 0) for - rc < u < n, then a(u) is defined 

uniquely by (9) up to an additive constant. If  we define 

I 
c t ( - n + 0 )  if u = - n ,  

%(u) = c~(u) if - n < u < n, 

a ( n - 0 )  if u = n ,  

then %(u) is also continuous at the endpoints u = ___ n. Setting 

(10) 

we may write 

o r  

(11) f (x)  = 

A = ~ ( -  ~ + O) - ~ ( -  tO, B = . ( n )  - . ( n  - o)  

f (x)  = f_[ e~X"d%(u) + Ae-~X+ Be ~ 

f f,, + (A + B)cos nx + i(B - A ) n x .  e~X"d%(u) sin 

THEOREM 6. I f  S,,(x) denotes the unique bounded element of 6Vem_l that 
interpolates f(x)  at all integer values of x, then 

lim Sin(x)=f~ e'XUd%(u) + (A + B)cosnx 

uniformly for all real x. 

PRoof. We claim that the unique interpolating spline S,~(x) which is bounded 

is also given by 

f: (12) Sin(x) = 2m-l(x; e~") d%(u) + (A + B)@2m-l(x) �9 

Indeed, observe first that IS:,~_l(x; e'~ __< 1 for all real x, by [6, Lec. 3, Rel. 

(6.13)], then that the Riemann-Stieltjes sum 

(13) X S2m- I(X ; exp (iv j) (%(ui) - %(uy_ 1)) 

evidently is an element of ~2m-1 that converges uniformly on refinement with 

respect to x in every finite interval of the x-axis. It follows that the SIn(X), defined 

by (12), is an element of SV2m _ 1" To show that it interpolates f(x), for x = v an 

integer, note that (12) implies that 
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f "/'"d~o(U) Sin(v) - + (A + B) cos nv + i(B - A) sin Try = f(v) 

by (11). This proves our claim in the opening statement of  the proof of  Theorem 6. 

We now define 

(14) fo(x) = f ~  etX" d~o(U) + (A + B)cos~x. 
d -  

Subtracting (12) from (14) we obtain 

f: fo(X) - S,,,(x)= (e ~--- S2m_ I(X; e~"))dao(U) + (A + B)(cos Irx - gem-l(x)), 

from which 

[To(x) - S . (x ) [  ___ f~. [e "x- s2._,(x; e") I Id~o(,)l + 

+ la + 8[ Icos .x -  e,._~(~)l. 

Using sup-norms on R, (7) shows that 

_ -  f'(I.Jl lifo(x)- s,,,(x)ltoo < 3 I d=o(U)[ + la + B[" II cos~x-  e2.-l(s) I[~. 
d-~\ x ]  

The last term on the right side approaches zero as m approaches infinity by (8). 

The integral approaches zero as well because of  the continuity of  ~o(u) at the 

endpoints _ lr. This also implies the continuity of the total variation of ~o(U) at 

those points which completes the proof of Theorem 6. 

3. Special cases 

In this section we wish to show how Theorem 6 furnishes the previously shown 

results as well as many new ones for special choices of  the function ~(u). We offer 

three such cases. 

(i) (Yv) is a periodic sequence. Let k = 21 + 1 be odd. The trigonometric 

polynomial (1) is evidently of the form (9) if ~(u) is a suitable step-function. This 

step-function is continuous at _+ rc and Theorem 6 implies Theorem 1. If  k = 21 

is even, then (2) also results from (9) for an appropriate step-function ~(u). The 

relation (3) shows that its two jumps (10) are equal, hence f (x)  = fo(X) and 

Theorem 6 implies Theorem 2. 

(ii) (yv) ~ 12. The function f(x) as defined by (4), is also of the form required 

by Theorem 6. Since g(u)~ L 2 ( -  rr, rr) implies g(u)~ L~(- lr, zr), it suffices to set 
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~(u)  = 2-7- f ~g(v)dv, for  - ~z < u < re. 

Here  ~(u) is even absolutely continuous.  

(iii) F(x) is a lmost  periodic in the sense of  H. Bohr. I f  ~(u), as defined in (9), 

is purely discontinuous,  we obtain f rom (9) that  with pairwise different 2~ 

f(x) = ~ Avexp(i2vx), ~ < 0% for  - u =< 2~ =< re. 
v=l 1 

O f  course the number  o f  discontinuities may  also be finite, but  in any  case f(x) is 

a lmost  periodic and has an absolutely-convergent  Fourier  series. In order  to have 

the interpolating spline Sin(x) converge to f(x) we must  assume that  if  2a = - n ,  

then (say) 2 2 = re, and A 1 = A2, hence 

f(x) = 2Alcosrcx  + ~ Avexp(i2vx ). 
3 
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